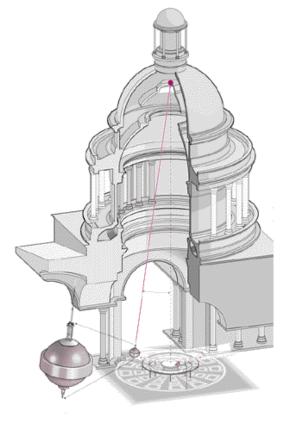
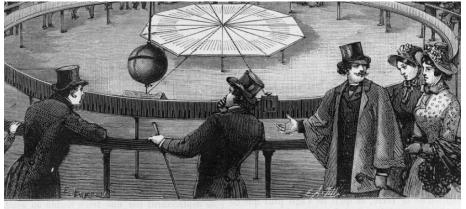
Pendule de Foucault

On observe que le plan des oscillations du pendule tourne. La période est de 32 h à Paris (dépend de la latitude).

Panthéon – Paris



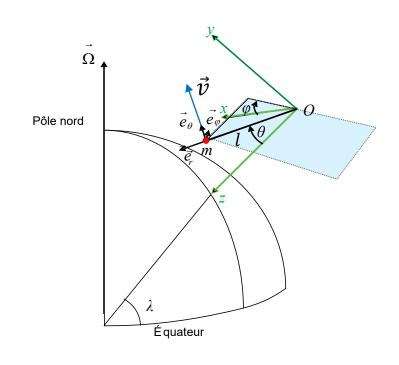
1851 – longueur 67 m



L'expérience du pendule de Léon Foucault au Panthéon de Paris, en 1851.

4.8. Phénomènes liés à Coriolis

■ Calcul de la vitesse angulaire du plan de rotation du pendule de Foucault



Hypothèse des oscillations de faible amplitude (θ petit) et on néglige le terme dû à l'accélération centrifuge

$$\vec{v} = \dot{r}\vec{e}_r + r\dot{\theta}\vec{e}_\theta + r\dot{\varphi}\sin\theta\,\vec{e}_\varphi$$

Avec r=l donc $\dot{r}=0$. De plus, en utilisant le fait que θ est petit, on peut négliger les termes comportant un $\sin\theta$ et considérer que $\cos\theta\approx1$.

Ainsi la vitesse devient $\vec{v} \approx l \dot{\theta} \vec{e}_{\theta}$

L'accélération en coordonnées sphériques s'écrit :

$$\vec{a} = (\ddot{r} - r\dot{\theta}^2 - r\dot{\varphi}^2 \sin^2 \theta)\vec{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\varphi}^2 \cos \theta \sin \theta)\vec{e}_\theta + (r\ddot{\varphi} \sin \theta + 2r\dot{\varphi}\dot{\theta} \cos \theta + 2\dot{r}\dot{\varphi} \sin \theta)\vec{e}_\varphi$$

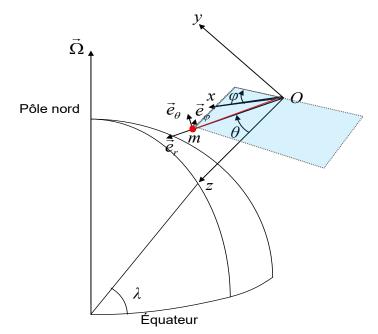
Avec $\dot{r} = 0$ et $\ddot{r} = 0$ nous avons $\vec{a} \approx -l\dot{\theta}^2 \vec{e}_r + l\ddot{\theta}\vec{e}_\theta + 2l\dot{\phi}\dot{\theta}\vec{e}_\phi$

On exprime $\vec{\Omega}$ dans la base $\vec{e}_x \vec{e}_y \vec{e}_z$: $\vec{\Omega} = \Omega(\cos \lambda \vec{e}_y - \sin \lambda \vec{e}_z)$

Nous pouvons exprimer les vecteurs $\vec{e}_r \vec{e}_\theta \vec{e}_\varphi$ dans la base $\vec{e}_x \vec{e}_y \vec{e}_z$ $\vec{e}_r = \sin\theta\cos\varphi\ \vec{e}_x + \sin\theta\sin\varphi\ \vec{e}_y + \cos\theta\ \vec{e}_z$ $\vec{e}_\theta = \cos\theta\cos\varphi\ \vec{e}_x + \cos\theta\sin\varphi\ \vec{e}_y - \sin\theta\ \vec{e}_z$ $\vec{e}_\varphi = -\sin\varphi\ \vec{e}_x + \cos\varphi\ \vec{e}_y$

4.8. Phénomènes liés à Coriolis

■ Calcul de la vitesse angulaire du plan de rotation du pendule de Foucault



En utilisant le fait que θ est petit, les expressions deviennent :

$$ec{e}_r pprox ec{e}_z \ ec{e}_{ heta} pprox \cos \varphi \, ec{e}_x + \sin \varphi \, ec{e}_y \ ec{e}_{arphi} pprox - \sin \varphi \, ec{e}_x + \cos \varphi \, ec{e}_y$$

Nous avons donc

$$\begin{split} \vec{e}_x &\approx \cos\varphi \, \vec{e}_\theta - \sin\varphi \, \vec{e}_\varphi \\ \vec{e}_y &\approx \sin\varphi \, \vec{e}_\theta + \cos\varphi \, \vec{e}_\varphi \\ \vec{e}_z &\approx \vec{e}_r \end{split}$$

Finalement:

$$ec{\Omega} = \Omega ig(-\sin\lambda\,ec{e}_r + \cos\lambda\sin\phi\,ec{e}_ heta + \cos\lambda\cos\phi\,ec{e}_\phi ig)$$

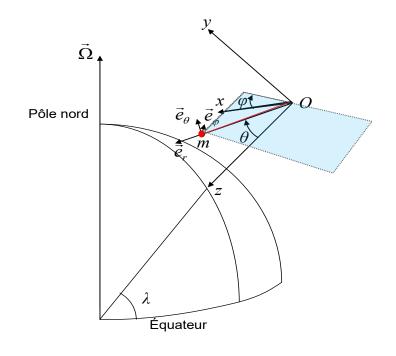
 $\vec{\Omega}$ dans la base $\vec{e}_x \vec{e}_y \vec{e}_z$: $\vec{\Omega} = \Omega(\cos \lambda \vec{e}_y - \sin \lambda \vec{e}_z)$

La force de Coriolis est

$$\begin{split} \vec{F}_{cor} &= -2m\Omega \dot{\Omega} \times \vec{v} = -2m\Omega \left(-\sin\lambda\,\vec{e}_r + \cos\lambda\sin\phi\,\vec{e}_\theta + \cos\lambda\cos\phi\,\vec{e}_\phi \right) \times l\dot{\theta}\vec{e}_\theta \\ \vec{F}_{cor} &= -2m\Omega l\dot{\theta} \left(-\sin\lambda\,\vec{e}_\phi - \cos\lambda\cos\phi\,\vec{e}_r \right) \\ \\ \vec{F}_{cor} &= 2m\Omega l\dot{\theta} \left(\sin\lambda\,\vec{e}_\phi + \cos\lambda\cos\phi\,\vec{e}_r \right) \end{split}$$

4.8. Phénomènes liés à Coriolis

■ Calcul de la vitesse angulaire du plan de rotation du pendule de Foucault



On applique ensuite l'expression de la 2nd loi de Newton dans un référentiel non galiléen.

Les forces externes sont :

- Le poids $m\vec{g}$
- La tension du fil \vec{T}

$$mec{a}=mec{g}+ec{T}+ec{F}_{cor}$$
 (On néglige la force centrifuge) $ec{a}pprox -l\dot{ heta}^2ec{e}_r+l\ddot{ heta}ec{e}_{ heta}+2l\dot{\phi}\dot{ heta}ec{e}_{\phi}$ $ec{F}_{cor}=2m\Omega l\dot{ heta}ig(\sin\lambda\,ec{e}_{\phi}+\cos\lambda\cos\phi\,ec{e}_rig)$

On projette sur \vec{e}_r , \vec{e}_θ , \vec{e}_{φ} :

$$\begin{cases} -ml\dot{\theta}^2 = mg\cos\theta - T + 2m\Omega l\dot{\theta}\cos\lambda\cos\varphi \\ ml\ddot{\theta} = -mg\sin\theta \\ 2ml\dot{\phi}\dot{\theta} = 2m\Omega l\dot{\theta}\sin\lambda \end{cases}$$

Soit finalement : $\dot{\varphi}=\Omega\sin\lambda$ La période pour un tour complet est donc : $T=rac{2\pi}{\Omega\sin\lambda}$